ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
James P. Blanchard, Carl J. Martin, Mark Tillack, Xueren Wang
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 313-317
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12372
Articles are hosted by Taylor and Francis Online.
One of the primary failure mechanisms addressed by structural design rules for fusion components is ratcheting, the accumulation of strain with cyclic loads. If a component is loaded such that ratcheting occurs, failure can be expected in relatively short order, so design rules must ensure that the behavior is avoided. In this paper, we present finite element models for cyclic loading of typical fusion structures and compare the results to analytical models for simple geometries and design rules intended for more complex geometries. Both material and structural ratcheting is considered. For structural ratcheting, the 3Sm rule employed in the ITER Structural Design Criteria is found to be unduly conservative and the accompanying Bree rules are found, in some cases, to be non-conservative. Significant advantage can be gained from using fully plastic models to avoid ratcheting.