ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
James P. Blanchard, Carl J. Martin, Mark Tillack, Xueren Wang
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 313-317
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12372
Articles are hosted by Taylor and Francis Online.
One of the primary failure mechanisms addressed by structural design rules for fusion components is ratcheting, the accumulation of strain with cyclic loads. If a component is loaded such that ratcheting occurs, failure can be expected in relatively short order, so design rules must ensure that the behavior is avoided. In this paper, we present finite element models for cyclic loading of typical fusion structures and compare the results to analytical models for simple geometries and design rules intended for more complex geometries. Both material and structural ratcheting is considered. For structural ratcheting, the 3Sm rule employed in the ITER Structural Design Criteria is found to be unduly conservative and the accompanying Bree rules are found, in some cases, to be non-conservative. Significant advantage can be gained from using fully plastic models to avoid ratcheting.