ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
L. P. Ku, P. R. Garabedian
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 207-215
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1237
Articles are hosted by Taylor and Francis Online.
We have identified and developed new classes of quasi-axially symmetric configurations that have attractive properties from the standpoint of both near-term physics experiments and long-term power-producing reactors. These include configurations with very small aspect ratios (~2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from the shaping fields so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, will have a small but positive shear, making the avoidance of low-order rational surfaces at a given operating beta possible. Additionally, we have found configurations with National Compact Stellarator Experiment-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have also designed coils to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have the properties of R/min(C-P) 6 and R/min(C-C) 10, where R is the plasma major radius and min(C-P) and min(C-C) are the minimum coil-to-plasma and coil-to-coil separations, respectively. These coil properties allow power-producing reactors to be designed with R < 9 m for deuterium-tritium plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of alpha particles to below 10%.