ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
L. P. Ku, P. R. Garabedian
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 207-215
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1237
Articles are hosted by Taylor and Francis Online.
We have identified and developed new classes of quasi-axially symmetric configurations that have attractive properties from the standpoint of both near-term physics experiments and long-term power-producing reactors. These include configurations with very small aspect ratios (~2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from the shaping fields so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, will have a small but positive shear, making the avoidance of low-order rational surfaces at a given operating beta possible. Additionally, we have found configurations with National Compact Stellarator Experiment-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have also designed coils to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have the properties of R/min(C-P) 6 and R/min(C-C) 10, where R is the plasma major radius and min(C-P) and min(C-C) are the minimum coil-to-plasma and coil-to-coil separations, respectively. These coil properties allow power-producing reactors to be designed with R < 9 m for deuterium-tritium plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of alpha particles to below 10%.