ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Mitsuhiro Aoyagi, Satoshi Ito, Shinji Ebara, Takeo Muroga, Hidetoshi Hashizume
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 283-287
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12366
Articles are hosted by Taylor and Francis Online.
A thermo-fluid simulation was conducted to clarify heat transfer properties and then to show a design window of the first wall of a Li/V blanket with three-surface-multi-coated channels. Channel dimensions were treated as parameters and their effects on the heat transfer properties and the design window were discussed in the various heat flux of 0.8 to 1.2 MW/m2. In the simulation, the magnetic field of 1 and 10T was assumed in order to investigate how the velocity profiles affect the heat transfer performance. The MHD flow was supposed to be two-dimensional-fully-developed laminar flow. Three-dimensional heat-transfer simulation was conducted with assumption of one-side heating by the constant heat flux on the first wall by using the flow field obtained by the 2D flow analysis. It was found that effects of the flow distributions were small on the heat transfer. The channel height, however, affects the heat transfer characteristics so much and the design window is shown to be limited to relatively small channel dimensions due to the induced stress in the first wall.