ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
S. Malang, M. Tillack, C. P. C. Wong, N. Morley, S. Smolentsev
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 249-256
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST10-212
Articles are hosted by Taylor and Francis Online.
Liquid metal breeders such as Lithium or the eutectic Lead-Lithium alloy PbLi have the potential for attractive breeding blankets, especially if the liquid metal serves as breeder and coolant. However, cooling of first wall and blanket structure is a challenging task because the magnetic field degrades the heat transfer and can cause a really high pressure drop. To overcome these problems, dual coolant blankets with helium cooled FW/blanket structure and a self-cooled breeding zone had been proposed, with electrical insulation by ceramic-coatings or sandwich flow channel inserts. Such concepts are in principle simpler than helium cooled blankets, but the thermal efficiency is limited to ~35 % as in any helium cooled blankets with steel structure. A much higher efficiency up to about 45 % became feasible when the sandwich insulator was replaced by flow channel inserts (FCI) made of a SiC composite. This FCI serves as thermal insulator too, allowing an exit temperature of ~700° C, suitable for a BRAYTON cycle power conversion system.The subject of this paper is a description of the Lead-Lithium blanket development and the major improvements on the dual coolant Lead-Lithium (DCLL) blanket concept achieved in the US during the last 10 years.