ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kazuhisa Yuki, Hidetoshi Hashizume, Saburo Toda
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 238-242
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12359
Articles are hosted by Taylor and Francis Online.
A sub-channels-inserted porous evaporator is proposed as a heat removal device of the divertor with a heat load exceeding 10 MW/m2. The porous medium is made by sintering copper particles of micro size in diameter and has several sub-channels to enhance discharge of generated vapor outside the porous medium. This porous cooling devise is attached onto the backside of the divertor and remove the heat by evaporating water passing through the porous medium against the heat flow. In order to prove the effect of the sub-channels, the heat transfer characteristics of this porous device are evaluated experimentally using a plasma arcjet as a high heat flux source. The result shows that the heat transfer performance of copper-particles-sintered porous medium with the sub-channels enables to remove much higher heat flux under lower flow rate and lower wall superheat conditions, compared with the normal porous media. The removal heat flux, 8.1 MW/m2, is 1.8 times as higher than that of the normal porous medium at a wall superheat of 50 degrees (the heat transfer coefficient, 1.6 × 105 W/m2/K, is 2.4 times as higher). The removal heat flux reaches almost 10 MW/m2 although the wall superheat exceeds 100 degrees (The wall temperature is approximately 220 degrees C. still in a fully developed boiling regime). In addition, the removal heat flux exceeds 20 MW/m2 by increasing the number of the sub-channels under lower wall superheat conditions, which proves high potential of the sub-channels-inserted porous evaporator.