ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. D. Hageman, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 228-232
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST10-232
Articles are hosted by Taylor and Francis Online.
The helium-cooled plate-type divertor can reduce the number of divertor modules while accommodating heat fluxes q" up to 10 MW/m2 incident on tungsten-alloy armor. Dynamically similar experimental studies were performed to evaluate the thermal performance of variants of this divertor design at conditions that spanned the prototypical operating Reynolds number Re of 3.3 × 104. In the studies, a jet of air issuing from 0.5 mm and 2 mm wide slots impinged on and cooled a heated planar surface 2 mm away from the slot, then flowed through either a 2 mm wide channel or an array of cylindrical pin fins. The studies indicate that the fins, which increase the cooled surface area by a factor of 3.76, increase the effective heat transfer coefficient (HTC) by as much as 160% at a relatively modest increase in pressure drop of less than 40%.These experimental results were used to determine the thermal performance of the actual plate design with helium cooling under prototypical conditions. Although the benefit of the fins is reduced because the fin efficiency decreases as the HTC increases, the predictions suggest that the fins could increase the maximum q" that can be accommodated by this design to ~18 MW/m2. Alternatively, for a given heat flux (e.g. 10 MW/m2), adding fins could allow operation of the divertor at lower coolant flow rates, and hence pumping powers.