ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
X. R. Wang, S. Malang, M. S. Tillack, ARIES Team
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 218-222
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12355
Articles are hosted by Taylor and Francis Online.
This paper considers a combination of ARIES modular finger concept and a design with helium channels in a thick plate. Multiple-jet cooling at a back side of a plasma facing surface is employed in this concept. The plasma facing surface is subdivided into a large number of small hexagonal modules, similar to the EU finger concept. Such a modularization reduces thermal stresses and allows therefore maximum surface heat flux of 10 MW/m2 at least. A solution has been found allowing brazing the fingers made of a W-alloy directly into the W-plate, avoiding in this way the connection of dissimilar materials with largely different thermal expansion coefficients. For an increase in reliability, double walled thimbles are used in the most critical region, providing an additional barrier against leaks of the high pressure helium. Thermal-mechanical calculations confirmed the expected high performance of the concept with the maximum allowable heat flux > 10 MW/m2 with all the components staying in the elastic regime. Extensive analyses of non-linear materials responses, such as plastic deformation (yield) are performed to allow the materials to be pushed beyond 3Sm in order to determine the maximum allowable heat flux can be.