ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shahram Sharafat, Aaron T. Aoyama, Nasr Ghoniem, Brian Williams
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 208-212
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12353
Articles are hosted by Taylor and Francis Online.
A rectangular single channel low pressure drop helium-cooled refractory metal heat exchanger (HX) tube for divertor applications was designed and manufactured for testing in the SNL E-beam facility. A unique fabrication feature of the rectangular HX channel design is that all welds, brazes, and joints are located at or near the bottom of the rectangular channel, i.e., far from any heated surface. The HX tube concept uses a thin (~2mm) layer of open-cell refractory foam bonded underneath the heated surface to enhance heat transfer to the helium coolant.The helium coolant flows through a 2-mm-wide slot and then through the thin foam layer (~2 mm × 12 mm × 127 mm; H/W/L) from the inlet to the outlet plenum. This design minimizes the path of helium flow through foam to about 11 mm and thus the pressure drop through the porous media is more or less constant along the length of the channel. The concept is scalable for cooling large flat surfaces, such as a flat-plate divertor, without substantially increasing the coolant pressure losses.We present CFD analyses used to optimize the design for minimum pressure drop through the porous media and for highest uniformity of surface temperatures. A design-for-manufacturing concept for a single HX-channel was developed with the goal to minimize welds or joints near heated surfaces. Based on the advanced HX-channel design a number of HX-channels were manufactured using Mo as a surrogate material instead of tungsten.