ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Shahram Sharafat, Aaron T. Aoyama, Nasr Ghoniem, Brian Williams
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 208-212
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12353
Articles are hosted by Taylor and Francis Online.
A rectangular single channel low pressure drop helium-cooled refractory metal heat exchanger (HX) tube for divertor applications was designed and manufactured for testing in the SNL E-beam facility. A unique fabrication feature of the rectangular HX channel design is that all welds, brazes, and joints are located at or near the bottom of the rectangular channel, i.e., far from any heated surface. The HX tube concept uses a thin (~2mm) layer of open-cell refractory foam bonded underneath the heated surface to enhance heat transfer to the helium coolant.The helium coolant flows through a 2-mm-wide slot and then through the thin foam layer (~2 mm × 12 mm × 127 mm; H/W/L) from the inlet to the outlet plenum. This design minimizes the path of helium flow through foam to about 11 mm and thus the pressure drop through the porous media is more or less constant along the length of the channel. The concept is scalable for cooling large flat surfaces, such as a flat-plate divertor, without substantially increasing the coolant pressure losses.We present CFD analyses used to optimize the design for minimum pressure drop through the porous media and for highest uniformity of surface temperatures. A design-for-manufacturing concept for a single HX-channel was developed with the goal to minimize welds or joints near heated surfaces. Based on the advanced HX-channel design a number of HX-channels were manufactured using Mo as a surrogate material instead of tungsten.