ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
L. El-Guebaly, R. Kurtz, M. Rieth, H. Kurishita, A. Robinson, ARIES Team
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 185-189
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12349
Articles are hosted by Taylor and Francis Online.
The development of radiation-resistant materials to sustain the harsh fusion environment represents a challenging task for divertor designers. In recent years, advanced physics simulations of the power leaving the plasma with radiation and charged particles indicate much higher heat fluxes to the divertor than previous estimates. In response, experts in EU, Japan, and US developed several W alloys for advanced He-cooled divertors that can handle heat fluxes in excess of 10 MW/m2. This paper briefly discusses the ongoing effort to develop W alloys suitable for fusion applications, the challenging phenomena impacting the behavior of W under a fusion environment, and the environmental impact of the most promising, state-of-the-art alloys: W-La2O3 and W-1.1TiC.