ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Dong Won Lee, Suk Kwon Kim, Young-Dug Bae, Yang Il Jung, Jeong Yong Park, Yong Hwan Jeong, Byung Yoon Kim
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 165-169
ITER Systems | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12346
Articles are hosted by Taylor and Francis Online.
For the second qualification of the blanket First Wall (FW) procurement of the International Thermonuclear Experimental Reactor (ITER), a semi-prototype of the FW has been designed with increased local surface heat flux up to 5 MW/m2. In order to investigate the fabrication procedure and methods, two types of mock-up were fabricated; one was with twelve Be tiles for high heat flux test to check the joining integrity between Be tiles and the bending Cu block and the other was for testing the thermal-hydraulic prediction by commercial code, ANSYS-CFX when it has a complex geometry such as hypervapotron, which was used for designing the semi-prototype. The former was successfully fabricated and the test conditions were obtained through the preliminary analysis with ANSYS-CFX. The later was successfully fabricated and the test with KoHLT-2 (Korea Heat Load Test facility) was performed; mass flow rate of inlet coolant was the same as the ITER condition and heat flux was loaded up to 0.65 MW/m2. The results show that the temperature of the mock-up can be predicted using the ANSYS-CFX even with the complex geometry.