ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Suk-Kwon Kim et al.
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 161-164
ITER Systems | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12345
Articles are hosted by Taylor and Francis Online.
The Korean standard mockups with beryllium tile were fabricated to perform the high heat flux test for the qualification test of ITER blanket first wall. These mockups include the 80 mm × 80 mm beryllium armor tiles joined to the CuCrZr heat sink with stainless steel cooling tubes by HIP (Hot Isostatic Pressing) technology. The high heat flux tests were performed in the Korea heat load test facility (KoHLT-1) with the averaged surface heat flux of 1.25 MW/m2 by using a graphite heater. Preliminary thermal and mechanical analyses were carried out to simulate the test conditions and to determine the number of cycles for the fatigue lifetime of the mockups. In our KoHLT-1 facility, the normal heat cycle was based on an expected heat flux of 1.25 MW/m2, and each mockup had to endure the 1,000 normal heat cycles in this heat flux in accordance with the mechanical simulation. In the cyclic heat flux tests, the maximum surface temperature of the beryllium tiles was controlled below 400 °C. As a result of these high heat flux tests with the acceptance criteria of the ITER blanket first wall, the manufacturing technologies of the Korean standard mockups will be utilized to develop the tokamak blanket for the international qualification procedure.