ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Five companies receive DOE awards for HALEU transport packages
Five companies are the recipients of Department of Energy awards to support the development, modification, and licensing of transportation packages for high-assay low-enriched uranium (HALEU) fuel. HALEU, which is enriched between 5 percent and 20 percent, is the type of fuel required for the operation of many of the small advanced nuclear reactors that are being designed and developed by U.S. companies.
Duck-Hoi Kim et al.
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 118-122
ITER Systems | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12337
Articles are hosted by Taylor and Francis Online.
Since the recommendation of blanket redesign by 2007 ITER design review, the blanket system has been developed in the framework of blanket integrated product team composed mainly of ITER organization and procuring parties. As a part of blanket conceptual design tasks, Korea domestic agency has supported the design analyses with respect to the hydraulic and thermal performance of the inboard blanket shield block.Three dimensional thermo-hydraulic and thermo-mechanical analyses of the inboard conceptual model with the poloidal cooling concept were performed. Two kinds of operation scenarios, inductive and non-inductive operations, were considered as representative loading conditions. The pressure drop, heat transfer and coolant uniformity in cooling passages were investigated in detail. The stress evaluation according to relevant code and standard was carried out and thermal bowing at flexible supports was also investigated. This paper presents the detailed analysis results, identifies issues on the conceptual configuration and makes suggestions on design improvements. In addition, this manuscript briefly describes about the complementary study such as the comparison of heat transfer coefficients calculated by empirical formula and CFD, and the effect of surface roughness inside the cooling channels.