ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Giovanni Dell'Orco, Warren Curd, Fabien Berruyer, Seokho Kim, Roy Shearin, Juan Ferrada
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 100-104
ITER Systems | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12334
Articles are hosted by Taylor and Francis Online.
ITER is a joint international fusion facility to demonstrate the scientific and technological feasibility of fusion power for future commercial electric power facilities. ITER is designed to reject all the heat generated in the plasma and transmitted to the in-vessel components through the Tokamak Cooling Water System (TCWS) to the intermediate closed loop Component Cooling Water System (CCWS) and then to the environment via the open Heat Rejection System (HRS) and Cooling Towers. At the present the main in-vessel components as First Wall-Blanket (FW-BLK) and the Divertor (DIV) are cooled via four separated Primary Heat Transfer Systems (PHTSs). This paper describes the proposal to integrate the PHTS for the FW-BLK and DIV in a common loop to improve the availability and reliability of the cooling system. Furthermore, the paper presents the new thermal hydraulic design parameters, the relevant Process Flow Diagram (PFD) and a study for the new arrangements of the piping in the TCWS vault. Some associated issues for safety accidental scenarios are planned to be solved before the final acceptance of the proposal in the baseline design.