ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. T. Anderson, A. Abdou, A. F. Almagri, F. S. B. Anderson, J. M. Canik, W. Guttenfelder, C. Lechte, K. M. Likin, H. Lu, S. Oh, P. H. Probert, J. Radder, V. Sakaguchi, J. Schmitt, J. N. Talmadge, K. Zhai, D. L. Brower, C. Deng
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 171-176
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1232
Articles are hosted by Taylor and Francis Online.
Recent results are summarized for the Helically Symmetric Experiment (HSX), which has the capability of running as a quasi-helically symmetric stellarator or as a more conventional, nonsymmetric stellarator. From X-ray measurements, we have demonstrated improved confinement of energetic particles. With central electron cyclotron heating, the density profiles in the quasi-symmetric configuration are peaked, in contrast to the hollow or flat profiles when the symmetry is broken. The difference in profiles is attributed to the lowering of the neoclassical thermodiffusive flux when the symmetry is present. The central electron temperature is ~200 eV higher for the quasi-symmetric configuration over the nonsymmetric case. The power deposition profiles are similar for the two cases, implying that the neoclassical electron thermal conductivity is reduced with quasi-symmetry. Related to the good confinement characteristics in the quasi-symmetric mode of operation, fluctuations in the density and magnetic field, consistent with that of a global Alfvén eigenmode (GAE), are observed. While the neoclassical characteristics of the quasi-symmetric and nonsymmetric configurations are very different, we have yet to find, under present operating conditions, any significant difference (other than the possible GAE mode) in turbulence characteristics or blob formation at the plasma edge.