ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Weller, S. Sakakibara, K. Y. Watanabe, K. Toi, J. Geiger, M. C. Zarnstorff, S. R. Hudson, A. Reiman, A. Werner, C. Nührenberg, S. Ohdachi, Y. Suzuki, H. Yamada, W7-AS Team, LHD Team
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 158-170
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1231
Articles are hosted by Taylor and Francis Online.
Substantial progress has been achieved in raising the plasma beta in stellarators and helical systems by high-power neutral beam heating, approaching reactor-relevant values. The achievement of high-beta operation is closely linked with configuration effects on the confinement and with magnetohydrodynamic (MHD) stability.The magnetic configurations of the Wendelstein 7-AS (W7-AS) stellarator and of the Large Helical Device (LHD) and their optimization for high-beta operation within the flexibility of the devices are characterized. A comparative description of the accessible operational regimes in W7-AS and LHD is given. The finite-beta effects on the flux surfaces depend on the degree of configuration optimization. In particular, a large Shafranov shift is accompanied by formation of islands and stochastic field regions as found by numerical equilibrium studies. However, the observed pressure gradients indicate some mitigation of the effects on the plasma confinement, presumably because of the high collisionality of high-beta plasmas and island healing effects (LHD). As far as operational limits by pressure-driven MHD instabilities are concerned, only weak confinement degradation effects are usually observed, even in linearly unstable regimes.The impact of the results concerning high-beta operation in W7-AS and LHD on the future stellarator program will be discussed, including the relationship to tokamak research. Some of the future key issues appear to be the following: the control of the magnetic configuration (including toroidal current control), the modification of confinement and MHD properties toward the low-collisional regime, and the compatibility of high-beta regimes with power and particle exhaust requirements to achieve steady-state operation.