ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Christos Housiadas, Adolfo Perujo
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 68-73
Technical Paper | doi.org/10.13182/FST00-A123
Articles are hosted by Taylor and Francis Online.
The estimation of tritium inventories and permeation fluxes to the coolant in the International Thermonuclear Experimental Reactor (ITER) is an important issue from the safety standpoint. Previous calculations have been performed neglecting ITER's pulse operation because it was assumed that during plasma-off periods the processes become "frozen" until the plasma starts again. It is shown that this assumption may fail in certain cases, particularly in the first wall of ITER, where a larger (by an order of magnitude) inventory and permeation flux to the coolant is obtained when pulse operation is considered. The calculations are performed with the code TMAP4. The discontinuous nature of the plasma operation is mimicked by imposing on the plasma-facing side a heat flux and a particle implantation flux in the form of a quadratic stepwise periodic function oscillating between zero (plasma off) and a maximum value (plasma on).