ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Hot cell window replacements completed at Hanford lab
Workers recently completed an 18-month project, replacing 11 hot cell windows at the 222-S Laboratory at the Department of Energy’s Hanford Site in Washington state. Hanford contractor Navarro-ATL manages the lab.
A. Komori, T. Morisaki, T. Mutoh, S. Sakakibara, Y. Takeiri, R. Kumazawa, S. Kubo, K. Ida, S. Morita, K. Narihara, T. Shimozuma, K. Tanaka, K. Y. Watanabe, H. Yamada, M. Yoshinuma, T. Akiyama, N. Ashikawa, M. Emoto, H. Funaba, M. Goto, T. Ido, K. Ikeda, S. Inagaki, M. Isobe, H. Igami, K. Itoh, O. Kaneko, K. Kawahata, T. Kobuchi, S. Masuzaki, K. Matsuoka, T. Minami, J. Miyazawa, S. Muto, Y. Nagayama, Y. Nakamura, H. Nakanishi, Y. Narushima, K. Nishimura, M. Nishiura, A. Nishizawa, N. Noda, S. Ohdachi, Y. Oka, M. Osakabe, N. Ohyabu, T. Ozaki, B. J. Peterson, A. Sagara, K. Saito, R. Sakamoto, K. Sato, M. Sato, T. Seki, M. Shoji, S. Sudo, N. Tamura, K. Toi, T. Tokuzawa, K. Tsumori, T. Uda, T. Watari, I. Yamada, M. Yokoyama, Y. Yoshimura, O. Motojima, LHD Experimental Group, C. D. Beidler, T. Fujita, A. Isayama, Y. Sakamoto, H. Takenaga, P. Goncharov, K. Ishii, M. Sakamoto, S. Murakami, T. Notake, N. Takeuchi, S. Okajima, M. Sasao
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 136-145
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1229
Articles are hosted by Taylor and Francis Online.
Remarkable progress to access the reactor-relevant regime has been made in a recent experiment in the Large Helical Device. Optimizing the rotational transform, the average beta value of 4.3%, which is the highest record among helical devices, was achieved. The high-performance plasma with a fusion triple product up to ~2.2 × 1019 m-3keVs was sustained for >7 s by repetitive hydrogen pellet injection. With regard to steady-state operation, which is one of the key issues to realize a fusion reactor, discharges for >30 min were successfully sustained by ion cyclotron range of frequency heating with the aid of the magnetic axis swing technique to reduce the heat load to the plasma-facing component. In the discharge, the total input energy to the plasma reached 1.3 GJ, which also established a new record.