ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Mofreh R. Zaghloul
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 120-125
Technical Paper | doi.org/10.13182/FST06-A1227
Articles are hosted by Taylor and Francis Online.
The set of thermodynamic properties of high-temperature, weakly nonideal Flinabe (LiF-NaF-BeF2) gas is calculated and presented. High-temperature Flinabe gases (plasmas) appear in the inertial fusion energy chamber over a wide range of temperatures and pressures due to the absorption of X-rays and debris, emitted from the target microexplosion, within a very thin surface layer of the Flinabe liquid wall. The equation-of-state (EOS) and ionization equilibrium data of the resulting high-temperature gas were computed and are presented in another paper. In this paper, the set of thermodynamic properties (specific enthalpy, specific heats, adiabatic exponent, and sound speed) that are required, in conjunction with the Flinabe EOS, to perform gas dynamics calculations and the required assessments of many research and development issues in nuclear fusion is modeled and computed consistently with the previously presented EOS and ionization equilibrium data. This set of Flinabe thermodynamic properties is missed in the literature, and the need to model and estimate these properties seems to be immediate rather than justifiable. Computational results for Flinabe thermodynamic properties are presented and discussed. These properties have been presented as a set of isobars that have been validated by obtaining the limiting conditions at very high temperatures for a fully dissociated/fully ionized gas.