ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Mofreh R. Zaghloul
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 120-125
Technical Paper | doi.org/10.13182/FST06-A1227
Articles are hosted by Taylor and Francis Online.
The set of thermodynamic properties of high-temperature, weakly nonideal Flinabe (LiF-NaF-BeF2) gas is calculated and presented. High-temperature Flinabe gases (plasmas) appear in the inertial fusion energy chamber over a wide range of temperatures and pressures due to the absorption of X-rays and debris, emitted from the target microexplosion, within a very thin surface layer of the Flinabe liquid wall. The equation-of-state (EOS) and ionization equilibrium data of the resulting high-temperature gas were computed and are presented in another paper. In this paper, the set of thermodynamic properties (specific enthalpy, specific heats, adiabatic exponent, and sound speed) that are required, in conjunction with the Flinabe EOS, to perform gas dynamics calculations and the required assessments of many research and development issues in nuclear fusion is modeled and computed consistently with the previously presented EOS and ionization equilibrium data. This set of Flinabe thermodynamic properties is missed in the literature, and the need to model and estimate these properties seems to be immediate rather than justifiable. Computational results for Flinabe thermodynamic properties are presented and discussed. These properties have been presented as a set of isobars that have been validated by obtaining the limiting conditions at very high temperatures for a fully dissociated/fully ionized gas.