ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Mofreh R. Zaghloul
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 120-125
Technical Paper | doi.org/10.13182/FST06-A1227
Articles are hosted by Taylor and Francis Online.
The set of thermodynamic properties of high-temperature, weakly nonideal Flinabe (LiF-NaF-BeF2) gas is calculated and presented. High-temperature Flinabe gases (plasmas) appear in the inertial fusion energy chamber over a wide range of temperatures and pressures due to the absorption of X-rays and debris, emitted from the target microexplosion, within a very thin surface layer of the Flinabe liquid wall. The equation-of-state (EOS) and ionization equilibrium data of the resulting high-temperature gas were computed and are presented in another paper. In this paper, the set of thermodynamic properties (specific enthalpy, specific heats, adiabatic exponent, and sound speed) that are required, in conjunction with the Flinabe EOS, to perform gas dynamics calculations and the required assessments of many research and development issues in nuclear fusion is modeled and computed consistently with the previously presented EOS and ionization equilibrium data. This set of Flinabe thermodynamic properties is missed in the literature, and the need to model and estimate these properties seems to be immediate rather than justifiable. Computational results for Flinabe thermodynamic properties are presented and discussed. These properties have been presented as a set of isobars that have been validated by obtaining the limiting conditions at very high temperatures for a fully dissociated/fully ionized gas.