ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Smolentsev, N. B. Morley, M. Abdou
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 107-119
Technical Paper | doi.org/10.13182/FST06-A1226
Articles are hosted by Taylor and Francis Online.
In the dual-coolant lead lithium (DCLL) blanket, the key element is the flow channel insert (FCI) made of a silicon carbide composite (SiCf /SiC), which serves as electric and thermal insulator. The most important magnetohydrodynamic (MHD) and thermal issues of the FCI, associated with MHD flows and heat transfer in the poloidal channel of the blanket, were studied with numerical simulations using the U.S. DEMO DCLL design as a prototype. The mathematical model includes the two-dimensional momentum and induction equations for a fully developed flow and the three-dimensional (3-D) energy equation. Two FCI modifications, one with no pressure equalization openings and one with a pressure equalization slot, have been considered. The computations were performed in a parametric form, using the electric and thermal conductivity of the SiCf /SiC as parameters. Under the DEMO reactor conditions, parameters of the FCI have been identified that result in low MHD pressure drop and low heat leakage from the breeder into the helium flows. This paper also discusses the role of the pressure equalization openings, 3-D flow effects, and the effect of SiCf /SiC anisotropy.