ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Satoshi Fukada, Shigeki Ono, Shigenori Suemori
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 99-106
Technical Paper | doi.org/10.13182/FST06-A1225
Articles are hosted by Taylor and Francis Online.
The overall mass-transfer process of methane decomposition on Ni surfaces and hydrogen permeation through a Ni tube was experimentally investigated to design a catalytic-permeable Ni tube reactor. This is a basic study of an impurity detritiation system to decompose tritiated methane and continuously recover tritium in a gas mixture exhausted from fusion plasma. The mass-transfer process was comparatively studied under the two conditions of an open Ni tube without any packing and a Ni tube packed with 200-240 mesh Ni particles. Results were discussed in terms of a CH4 decomposition ratio decomp and a H2 permeation ratio perm. The decomp values depended on temperature and were almost independent of the flow rate. The decomp value was correlated to the first-order reaction-rate constant. On the contrary, the perm values were in reverse proportion to the flow rate and were almost independent of temperature. The perm value was related to diffusion through a H2 concentration boundary layer formed in the vicinity of the Ni tube wall. The degradation of catalytic performance due to carbon deposition on Ni was discussed based on our experiments.