ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
G. A. Cottrell, R. Pampin, N. P. Taylor
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 89-98
Technical Paper | doi.org/10.13182/FST06-A1224
Articles are hosted by Taylor and Francis Online.
We present calculations of the transmutation of initially pure tungsten first-wall and divertor plasma-facing armor into W-Re-Os alloys in the European Union Power Plant Conceptual Study (PPCS) fusion plant models A, B, and AB. The fusion neutron spectrum was modeled using the MCNP Monte Carlo code including resonance self-shielding effects, and we have calculated the evolution of the W-Re-Os alloy compositions. Trajectories of the alloys in the thermodynamic phase diagram show that the alloys remain in the single body-centered-cubic phase for their service lifetimes. Results for PPCS models A and B with soft neutron spectra show that the first-wall armor transmutes to an end-of-service alloy composition of approximately 91 at.% tungsten, 6 at.% rhenium, and 3 at.% osmium at its rear face. On the plasma-facing side of the tungsten, the effect of neutron shielding is larger. For PPCS model AB, the neutron spectrum is energetically harder, resulting in significantly lower tungsten transmutation rates.