ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Roger Raman
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 84-88
Technical Paper | doi.org/10.13182/FST06-A1223
Articles are hosted by Taylor and Francis Online.
Steady-state advanced tokamak (AT) scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fueling system must deposit small amounts of fuel where it is needed and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. Conventional fueling methods have not demonstrated successful fueling of AT-type discharges and may be incapable of deep fueling long-pulse edge-localized-mode-free discharges in ITER. The capability to deposit fuel at any desired radial location within the tokamak would provide burn control capability through alteration of the density profile. The ability to peak the density profile would ease ignition requirements, while operating ITER with density profiles that are peaked would increase the fusion power output. An advanced fueling system should also be capable of fueling well past internal transport barriers. Compact toroid (CT) fueling has the potential to meet these needs, while simultaneously providing a source of toroidal momentum input. Experimental data needed for the design of a CT fueler for ITER could be obtained on NSTX using an existing CT injector.