ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
T. Ozeki, N. Aiba, N. Hayashi, T. Takizuka, M. Sugihara, N. Oyama
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 68-75
Technical Paper | doi.org/10.13182/FST06-A1221
Articles are hosted by Taylor and Francis Online.
A strategy for integrated modeling of burning plasmas at Japan Atomic Energy Agency is described. In order to simulate the burning plasma, which has the complex feature of widely different timescales and spatial scales, a simulation code cluster based on the TOPICS transport code is being developed by integrating heating and current drive, impurity transport, the edge pedestal model, the divertor model, the magnetohydrodynamics (MHD), and the high-energy behavior model. The developed integration models are validated by fundamental research from JT-60U experiments and the simulation based on the First Principle in our strategy. The integration of MHD stability and the transport progresses for three phenomena with different timescales of neoclassical tearing modes (NTMs) (~NTM ~ 10-2R), beta limits (~Alfvén), and edge-localized modes (ELMs) (intermittent of E and Alfvén). Here, R, Alfvén, and E are the resistive skin time, the Alfvén transit time, and the energy confinement time, respectively. The integrated model of the NTM is produced by coupling the modified Rutherford equation with the transport equation. The integrated model of the beta limits is developed by the low-n stability analysis of downstreaming data from the TOPICS code. The integrated model of the ELM is developed by the iterative calculation of the MARG2D ideal MHD stability code and the TOPICS code. These models are being validated by the data from the JT-60 experiments and estimate the plasma performance for burning plasmas.