ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Takao Kawano, Yoichi Sakuma, Toshiki Kabutomori, Mamoru Shibuya
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 62-67
Technical Paper | doi.org/10.13182/FST00-A122
Articles are hosted by Taylor and Francis Online.
A tritium cleanup system has been conceptually developed for the large helical device (LHD) at the National Institute for Fusion Science. The system is a processing device employed to remove tritium from exhaust gas. In the exhaust gas discharged from the LHD in normal operation, the major part of tritium constituents should be in a form of hydrogen molecules because the fuel used in plasma experiments with the LHD is hydrogen molecules. From this viewpoint, we have designed a tritium cleanup system, which is characterized by tritium being removed and stored in a form of hydrogen molecules with less impurities, like oxygen and carbon, and its decomposition and the separation processes are introduced to convert various tritiated compounds into a form of hydrogen molecules of high purity. Besides these, there is another aspect in that getter materials are applied in both decomposition of tritiated compounds and storage of hydrogen molecules containing tritium.The system design is composed of three essential component parts: a hydrogen separator, a hydrogen absorbing vessel, and a decomposition process vessel. The hydrogen separator and the decomposition process vessel make a process loop repeat to remove hydrogen into a form of hydrogen molecules with less impurities. It is important that "less impurities" means having a less bad influence on hydrogen-absorbing materials used in the storage vessel.We think that the hydrogen separator will be manufactured by employing a palladium hydrogen purifier system, which is available in the marketplace, and the hydrogen storage vessel will also be manufactured by using hydrogen-absorbing alloys like titanium. Thus, the serious problem imposed on us is how to realize the decomposition process vessel. To develop the decomposition process vessel, we thought nonvolatile getter materials were promising and carried out performance tests of methane decomposition by the nonvolatile getter materials, where methane was used because it is hardly decomposed and there is little data for a flowing-gas system.The tritium cleanup system that was designed is presented. Also, a methane decomposition curve with ZrNi alloys used as one of the typical nonvolatile getter materials is shown, and the probability of the realization of the decomposition process vessel is examined.