ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
A. Jelea, F. Marinelli, Y. Ferro, A. Allouche, C. Brosset
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 33-42
Technical Paper | doi.org/10.13182/FST06-A1218
Articles are hosted by Taylor and Francis Online.
Quantum molecular dynamics calculations at constant temperature have been carried out in order to study the interaction between atomic oxygen and a hydrogen saturated graphite surface. It has been shown that atomic oxygen reacts at 300 K with the adsorbed hydrogen atoms to form hydroxyl radicals and water molecules. Part of these residue radicals adsorbs on the graphite forming hydroxylated structures. A study on the stability of these structures has shown that OH radical desorption begins at 500 K and formation of water molecules occurs by reaction between a desorbed hydroxyl radical and a hydrogen atom extracted from a neighboring adsorbed hydroxyl. The water molecules only very slightly interact with the graphite surface and are ejected into the gas phase.