ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
J. K. Hoffer, J. D. Sheliak, D. A. Geller, D. Schroen, P. S. Ebey
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 15-32
Technical Paper | doi.org/10.13182/FST06-A1217
Articles are hosted by Taylor and Francis Online.
Solid deuterium-tritium (the symbol DT is used here to represent the equilibrium mixture of 50% deuterium and 50% tritium, having the molecular composition: 25% D2, 50% deuterium tritide molecules, and 25% T2) (DT) is nucleated from DT-wetted foam and subsequently forms a uniform layer by the beta-layering phenomenon. Compared to DT frozen on smooth metal surfaces, the surface roughness of the inner-lying pure DT solid-vapor interface is substantially lower at all modal values higher than ~10, possibly due to the small-grain-size polycrystalline nature of the solid. For thick layers, deleterious effects are observed, notably the formation of DT-rich vapor voids in the foam matrix and the subsequent propagation of these voids into the pure solid DT layer.