ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. K. Hoffer, J. D. Sheliak, D. A. Geller, D. Schroen, P. S. Ebey
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 15-32
Technical Paper | doi.org/10.13182/FST06-A1217
Articles are hosted by Taylor and Francis Online.
Solid deuterium-tritium (the symbol DT is used here to represent the equilibrium mixture of 50% deuterium and 50% tritium, having the molecular composition: 25% D2, 50% deuterium tritide molecules, and 25% T2) (DT) is nucleated from DT-wetted foam and subsequently forms a uniform layer by the beta-layering phenomenon. Compared to DT frozen on smooth metal surfaces, the surface roughness of the inner-lying pure DT solid-vapor interface is substantially lower at all modal values higher than ~10, possibly due to the small-grain-size polycrystalline nature of the solid. For thick layers, deleterious effects are observed, notably the formation of DT-rich vapor voids in the foam matrix and the subsequent propagation of these voids into the pure solid DT layer.