ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
W. T. Shmayda, S. J. Loucks, R. Janezic, T. W. Duffy, D. R. Harding, L. D. Lund
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 851-858
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1213
Articles are hosted by Taylor and Francis Online.
The Laboratory for Laser Energetics (LLE) at the University of Rochester has conducted inertial confinement fusion experiments since the early 1970s. Beginning in 1996, LLE filled and fielded targets containing DT gas with pressures as high as 30 atm. Facilities are being upgraded to prepare, characterize, and field targets with DT ice on their inner surface. To this end, process loops that can pressurize DT gas to 1200 bar and operate at 17 K are in the final stages of commissioning. To preclude both accidental and chronic tritium releases and to minimize the potential for exposures to personnel, both metal hydride-based and oxidation drier-based cleanup systems have been installed and commissioned with hydrogen. Cryogenic DT targets will be fielded in 2006.