ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. L. Wilkens, J. Gunther, M. P. Mauldin, A. Nikroo, J. R. Wall, D. R. Wall, R. J. Wallace
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 846-850
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1212
Articles are hosted by Taylor and Francis Online.
The process of making multi-layered depleted uranium (DU) and gold "cocktail" hohlraums is being developed in a sputter-coater designed and assembled at General Atomics. These elements have been chosen to increase the hohlraum wall albedo, targeting the composition that results in the highest hohlraum efficiency. Rather than co-sputtering the cocktail constituents as was done previously, the approach taken in this work is to sputter alternating multiple thin layers of DU and gold. The intended outcome of creating a multi-layered structure is to encapsulate the DU in gold, thus reducing or perhaps preventing rapid oxidation of uranium, a known problem in the co-sputtered materials. Residual stress in coatings has been reduced to sufficiently low levels by optimizing deposition pressure allowing fabrication of free-standing cylinders and foils. Characterization of this type of sandwich material is difficult due to the fact that the cocktail region consists of buried interfaces, though promising results from Auger depth profiling show that the materials have sufficiently low oxygen content (4 at. %) as well as the targeted composition.