ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Yoshinori Kawamura, Mikio Enoeda, R. Scott Willms, Peter M. Zielinski, Richard H. Wilhelm, Masataka Nishi
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 54-61
Technical Paper | doi.org/10.13182/FST00-A121
Articles are hosted by Taylor and Francis Online.
The cryosorption method is useful for extracting hydrogen isotopes from a helium gas stream with a small amount of hydrogen isotopes. Therefore, in fusion reactors, this method is expected to be applied for the helium glow discharge exhaust gas processing system and the blanket tritium recovery system. To design these systems, adsorption isotherms for each hydrogen isotope are needed, making it possible to estimate the amount of adsorption in a wide pressure range. The amount of tritium adsorption on molecular sieve 5A, molecular sieve 4A, and activated carbon, which are potential adsorbents in the cryosorption bed, at liquid nitrogen temperature were quantified using the volumetric method. It was found that adsorption isotherms of tritium were also expressed with the two-site Langmuir model and that the obtained isotherms were close to the reported isotherms, the Langmuir coefficients for which were estimated using a reduced mass of hydrogen isotopes.