ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Bednarczyk, I. Geoffray, G. Perron, O. Legaie, Ph. Baclet
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 813-817
Technical Paper | Target Fabrication | doi.org/10.13182/FST49-813
Articles are hosted by Taylor and Francis Online.
In the last years, many applications of pulsed laser in precision machining have been demonstrated. Short pulse durations (nanosecond, picosecond and femtosecond) and short wavelength (U.V. and visible) create small heat-affected zones during the interaction with material such as polymers or metals. In the case of excimer lasers, energy carried by ultra-violet photon is sufficient to break apart molecular bonds without thermal effects, particularly in the case of the 3.7 eV C=H bond. All these properties facilitate high spatial resolution and high accuracy processes. This is especially true in the case of high absorbing carbon-hydrogen polymers.An excimer multipulses engraving technique using time-resolved surface ablation was developped using our home-made laser micro-machining work station. This four-axis work station is composed of motor-controlled translation and rotation stages. This experimental set-up was designed to pattern 3D object by the mean of the association of rotative and translative motions. Sinusoidal recording on polystyrene, polyimide and GDP polymers about ten micrometers spatial frequency and a few micrometers amplitude were performed using binary masks with particular shapes.Applications to hydrodynamics modes growth (which have detrimental effect on fusion burn in the "Megajoule laser" LMJ CH-GDP -shell) measurements will be performed on OMEGA laser facility.