ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
H. L. Wilkens, A. V. Hamza, A. Nikroo, N. E. Teslich
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 809-812
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1205
Articles are hosted by Taylor and Francis Online.
The current point design for ignition targets for the National Ignition Facility has a beryllium ablator. As Be is essentially impermeable to hydrogen, conceptually the shell will be filled by boring through the shell with a laser, then attaching a fill-tube. Examination of focused ion beam (FIB) technology is under way as an alternative to laser drilling. Holes of 40, 20, and 15 m diameter have been successfully ion milled through a 47 m thick Be layer. These holes are clean, though take several hours to make, and the geometry is limited by the aspect ratio of the depth to the diameter of the hole. Work was also done to investigate the possibility of using a FIB to create a counter-bore for the insertion and attachment of a fill-tube in a Be shell which has a pre-existing hole. Because the FIB can be controlled to sub-micron scales, the counter-bore can be easily centered on the through-hole and the side-walls and base of the counter-bore can be made very smooth. Finally, a proof-of-principle experiment was made to show that a Be wire could be attached to an in-situ micromanipulator and then be placed inside the counter-bore.