ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
J. S. Jaquez, E. L. Alfonso, A. Nikroo
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 768-772
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1199
Articles are hosted by Taylor and Francis Online.
We have successfully sputter deposited 2 m thick layers of SiO2 on CH mandrels ~ 2 mm in diameter to act as a permeation barrier for deuterium. Such targets can be used for experiments at Sandia's Z facility as well as at the National Ignition Facility (NIF). This permeation barrier has been shown to have a half-life (1/2) of ~2-4 weeks for a thickness of ~ 1.5 m. The sputter coating conditions have been successfully optimized to produce smooth uniform SiO2 coatings with enough integrity to allow routine handling as well as filling to the required pressures (20 atm). The key coating conditions investigated were the agitation mechanism and the coating pressure. We found that an agitation mechanism using gentle rolling produced coatings with a half-life of greater than three weeks, whereas a more vigorous bouncing agitation yielded half-lives of only a few days. Coating pressures of 2, 5, and 10 mTorr were studied and it was found that coatings at 5 mTorr produced coatings free of cracking. Since the sputtering is performed in a background atmosphere of argon, the sputtered SiO2 layer was found to contain trace amounts of argon as measured by x-ray fluorescence (XRF) measurements. Our work has yielded a controllable uniform alternative permeation barrier to the traditionally used poly(vinylalcohol) (PVA).