ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
A. K. Knight, D. R. Harding
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 728-736
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1193
Articles are hosted by Taylor and Francis Online.
Vapor deposited PMDA-ODA poly(amic acid) and polyimide capsules have been produced with desirable material properties (high tensile strength, permeability, and elastic modulus), but the contributions of the process steps and their dependence on external control variables has not been investigated. We have combined numerical simulations with experimental measurements to model the steps of the vapor deposition process including monomer sublimation, vapor transport to the bounce pan, and poly-condensation on the substrate surfaces. The measured sublimation rates of PMDA and ODA monomer at temperatures that yielded stoichiometric poly(amic acid) (10-6 Torr deposition) are 1.2 × 10-7 gm/s PMDA (at 153° C) and 6.3 × 10-10 gm/s ODA (at 126° C) - a 180:1 PMDA:ODA molar ratio. These provide initial boundary conditions to simulate the thermal environment and vapor transport inside the deposition chamber at 1 × 10-2 Torr. A disproportionate loss of PMDA gas during transport to a stationary mandrel is shown by the numerical model to reduce the monomer stoichiometry to 9:1 PMDA:ODA. The transport-based loss depends strongly on the geometry of the substrate support, as is shown by modifying the substrate to change the flow pattern, which reduces this ratio to 1:1 PMDA:ODA above the mandrel. A separate model of the kinetics of monomer deposition and polymerization reactions was developed to correlate the gas concentrations above the substrate with the elemental concentrations comprising the film. This basic model was tested with rate constants based on reaction probabilities of one and equal deposition rates for two monomers in the absence of measured values and is sensitive to changes in vapor stoichiometry.