ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kimberly A. DeFriend, Brent F. Espinoza, Arthur Nobile, Jr., Kenneth V. Salazar, Robert D. Day, Norman E. Elliott, Timothy H. Pierce, Joyce E. Elliott, Derek W. Schmidt, Frank Fierro, David Sandoval, Jeff Griego, Adelaida C. Valdez, Michael Droege
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 701-706
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1189
Articles are hosted by Taylor and Francis Online.
Inertial Confinement Fusion (ICF) energy hohlraums are composed of a high-Z material filled with foam. Because of the small pore size and transparency, silica aerogels are used in some ICF targets. The traditional synthesis of silica aerogels require sol-gel polymerization of silicon alkoxide followed by supercritical drying. Some constituents in sol-gel polymerization have been found to contribute to leaching of certain metals at the silica/metal interface. Since the hohlraums are composed of metals, possible chemical reactivity at the silica aerogel and metal hohlraum interface was investigated. The hohlraums studied are aluminum lined with either copper or copper/chromium. Upon initial inspection, the aerogel appeared transparent and uniform, however, closer inspection of the copper wall suggested possible leaching. Alternatively the quality of the aerogel in the copper-chromium hohlraum was very poor with the chromium layer of the hohlraum and some copper completely etched. Control experiments were used to determine the cause of the leaching. When copper is in the presence of sol-gel constituents, Cu2+ ion formed, thus leaching copper from the hohlraum walls. In the presence of chromium, Cr2O72- or CrO42- was identified in solution with the Cu2+, these anions are believed to form copper chromite under the aerogel synthesis procedures utilized.