ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Nobukatsu Nemoto, Keiji Nagai, Yoshitaka Ono, Kei Tanji, Tomoya Tanji, Mitsuo Nakai, Takayoshi Norimatsu
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 695-700
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1188
Articles are hosted by Taylor and Francis Online.
This paper deals with the development of materials without volume change in the formation of uniform low density foam capsules with fine structures. Two monomers, i.e., 5-(4-vinylbenzyl)oxymethyl-5-methyl-1,3-dioxane-2-thione (M1) and 4-vinylphenyloxirane (M2), were prepared as the comonomers polymerized with styrene. Polystyrene-based copolymers using styrene and M1 or M2 were prepared by free radical copolymerization using azobis(isobutyronitrile) (AIBN) as an initiator. The solutions of the obtained polystyrene-based copolymers in benzene/dichloromethane mixture or 4-chlorotoluene were gelated by the addition of a cationic initiator, which caused cross-linking via ring-opening polymerization of the pendant cyclic moieties. The gel was transformed into an aerogel by exchanging solvent to 2-propanol, and removal of 2-propanol using supercritical CO2. SEM images of a cross sectional view of the aerogel indicated that sub-micrometer voids were distributed randomly, and most of parts look filled bulk morphology. The density of the gel obtained from the present polystyrene-based copolymers was estimated to be 200 mg/cm , which implies existence of vacancies without observation in the SEM image, suggesting the extremely fine cell structure.