ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. F. Hund, R. R. Paguio, C. A. Frederick, A. Nikroo, M. Thi
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 669-675
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1184
Articles are hosted by Taylor and Francis Online.
A variety of silica, metal oxide, and metal doped aerogels are being developed for use as laser target materials. Silica aerogels have been produced with controlled densities as low as 5 mg/cc, and have been produced as bulk molds. Recently, 100 mg/cc small beads and hollow shells have also been fabricated using microencapsulation techniques. Metal oxide aerogels such as tantalum oxide (Ta2O5) and tin oxide (SnO2) are two other low-density materials that have been fabricated. Aerogels with embedded metal particles are also of interest and several methods for producing these composite aerogels are being explored. Each method limits excessive aggregation of the metal so that the end product has a uniform loading of small metal particles. Ion implantation is being investigated as another method that allows more control of the metal doping. With ion implantation the metal dopant can be placed in a narrow distribution beneath the surface of an aerogel, and initial results of 1 MeV Au- implanted in 67 mg/cc SiO2 are described.