ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
C. A. Frederick, R. R. Paguio, A. Nikroo, J. H. Hund, O. Acennas, M. Thi
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 657-662
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1182
Articles are hosted by Taylor and Francis Online.
Resorcinol Formaldehyde (R/F) foam has been used in the fabrication of direct drive shell targets for Inertial Fusion Confinement (ICF) experiments at the University of Rochester's Laboratory for Laser Energetics (LLE). Recent cryogenic experiments at LLE using R/F shells have shown the necessity of larger pore foam compared to the standard R/F formulation. In this paper, we report controlling the pore size of R/F foam with concomitant control of the gelation time, which is crucial for successful shell fabrication. The "standard" formulation, with pores of <100 nm, was modified by decreasing the base catalyst to resorcinol concentration ratio creating a large pore R/F foam (~ >0.5 m) through reaction limited aggregation. However, this formulation decreased the gelation time, which decreased the yield of shells with proper wall uniformity (~ 30%) to an unacceptable level of <1%. We developed a technique to achieve control over the gelation time, while keeping the large pore characteristics of R/F to improve shell non-uniformity and increasing the yield to an acceptable level. We also developed a new technique for large pore formation involving changes to the acid catalyst concentration. The effects of this new formulation on the wall uniformity of shells are discussed. The pore distributions obtained using these new R/F foams were characterized using a variety of techniques, including electron microscopy, nitrogen gas adsorption, visible spectroscopy, and small angle x-ray scattering and compared to the standard small pore formulation.