ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
H. Huang, R. B. Stephens, S. A. Eddinger, J. Gunther, A. Nikroo, K. C. Chen, H. W. Xu
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 650-656
Technical Paper | Target Fabrication | doi.org/10.13182/FST49-650
Articles are hosted by Taylor and Francis Online.
We have developed the only non-destructive technique to profile graded dopants in ICF shells to the precision required by the NIF specifications (Doping level must be accurate to 0.03 at. % and its radial distribution accurate to submicron precision). This quantitative contact radiography method was based on precision film digitization and a dopant simulation model. The measurements on Cu/Be and Ge/CH shells agree with those from electron microprobe and X-ray fluorescence.