ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Wu-Sheng Shih, R. B. Stephens, W. J. James
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 24-31
Technical Paper | doi.org/10.13182/FST00-A118
Articles are hosted by Taylor and Francis Online.
Composite coatings containing beryllium are prepared by plasma-enhanced chemical vapor deposition at a substrate temperature as low as 250°C in a radio-frequency-induced cylindrical plasma reactor. Diethylberyllium is used as the precursor together with hydrogen as a coreactant gas. These coatings are characterized by Auger electron spectroscopy (AES), X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, electrical resistivity, and thermogravimetric analysis. AES indicates that the composition of the coatings reaches a steady level at a depth of 300 Å from the surface and maintains a constant composition throughout the thickness of the coatings. The characterization studies establish the dominant phase to be Be2C. The coatings are also resistant to oxidation and hydrolysis in dry/moist air unlike bulk Be2C. It is found that the coatings deposited close to the diethylberyllium inlet contain amorphous beryllium that is homogeneously dispersed in a Be2C matrix. Films of ~5-m thickness with an acceptable permeability to H2 are prepared. These coatings meet some of the major requirements of the ablator material for inertial confinement fusion target capsules.