ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
F. Gillot, A. Choux, L. Jeannot, G. Pascal, P. Baclet
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 626-634
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1176
Articles are hosted by Taylor and Francis Online.
The characterization of the solid DT layer, in terms of thickness and roughness, in the LMJ geometry (hohlraum) is not trivial. The DT layer measurements will be done using a Maksutov-Cassegrain telescope, 39 cm away from the target. This telescope will be used to acquire shadowgraphy images and spectral-interferometry measurements. Shadowgraphy imaging probes the DT layer geometry at the equator of the target. Spectral-interferometry gives the DT layer thickness on one spot on the shell, in the polar regions of the target. By scanning around the poles, several points can be acquired to probe the roughness and the local shape of the DT layer at the poles. This paper presents the spectra-interferometry technique and explains how the DT layer thickness could be deduced from channelled spectra. First experimental results on a 125 m thick empty shell are also reported.