ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, S. J. Verbridge, M. D. Wittman, A. Warrick, T. Brown, W. Seka
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 616-625
Technical Paper | Target Fabrication | doi.org/10.13182/FST49-616
Articles are hosted by Taylor and Francis Online.
Backlit optical shadowgraphy is the primary diagnostic for D2 ice layer characterization of cryogenic targets for the OMEGA Laser System at the Laboratory for Laser Energetics (LLE). Reflection and refraction of light passing through the ice layer produce characteristic rings. The position of the most prominent of the shadowgraph rings, known as the bright ring, can be resolved to ~0.1-pixel rms, corresponding to about 0.12 m for typical LLE target shadowgraphs. Measurement of the bright ring position in conjunction with ray-trace model predictions determines the ice layer thickness and the Fourier-mode spectrum of the ice roughness for that view. The LLE target characterization stations use two camera angles and target rotation to record target shadowgraphs from many different views. Combining these views allows construction of a 3-D ice layer representation, an estimation of the global surface roughness, and a determination of a Legendre-mode spectrum suitable for implosion modeling. The standard operating procedure is to construct a 3-D ice layer representation using the analysis of 48 separate shadowgraphic views. The 3-D ice surface is then decomposed in terms of spherical harmonics, allowing the determination of low-mode number (l 8 to 10) elements of a Legendre-mode power spectrum. Higher-mode number elements of the Legendre power spectrum are determined by mapping the Fourier-mode power spectrum averaged over all views