ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. M. S. Ronden, M. A. Henderson, B. Becket, T. Bigelow, J. Caughman, C. Darbos, F. Gandini, C. Nazare, D. Rasmussen, V. Udintsev
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 718-728
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST59-718
Articles are hosted by Taylor and Francis Online.
An engineering study has been performed on the ITER electron cyclotron transmission lines with the aim of optimizing its conceptual design. The support types and optimum spacing, cooling, vacuum, seismic, and gravitational effects were reviewed. For the vacuum system it was shown that two pumps per line, with a capacity of 50 l/s, are sufficient. It was explained that the temperature variation inside the building is the predominant factor that influences the thermal expansion of the lines. The support strategy is one of minimizing the number of constraints. Variation in support interspacing reduces the degree of harmonic disturbances. The section of transmission line inside the ITER port cell was identified as critical with regards to occurrence of deformation and stresses. Potential solutions are described. The use of seismic breaks is discussed in light of the differences in foundation and structure of the ITER tokamak building and assembly hall. It is proposed that this interface be studied in more detail, after more data is available on the behavior of these buildings. The geometry of individual supports should be simple, with the fewest possible adjustments. The supports are designed to allow small movements of the waveguide to compensate for the thermal expansion or contraction. The transmission line system can be made for optimum alignment during nominal operating temperatures by prestressing during installation.