ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
F. Gandini, T. S. Bigelow, B. Becket, J. B. Caughman, D. Cox, C. Darbos, T. Gassmann, M. A. Henderson, O. Jean, K. Kajiwara, N. Kobayashi, C. Nazare, Y. Oda, T. Omori, D. Purohit, D. A. Rasmussen, D. M. S. Ronden, G. Saibene, K. Sakamoto, M. A. Shapiro, K. Takahashi, R. J. Temkin
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 709-717
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST05-38
Articles are hosted by Taylor and Francis Online.
The transmission line (TL) subsystem associated with the ITER electron cyclotron heating and current drive system has reached the conceptual design maturity. At this stage the responsibility of finalizing the design has been transferred from the ITER Organization to the U.S. Domestic Agency. The purpose of the TL is to transmit the microwaves generated by the 170-GHz gyrotrons installed in the radio-frequency building to the launchers located in one equatorial and four upper tokamak ports. Each TL consists of evacuated HE11 waveguides, direct-current breaks, power monitors, mitre bends, polarizers, switches, loads, and pumping sections and will have a typical length that ranges from 100 to 160 m. Overall transmission efficiency could be as high as 92% depending on the specific path between a given gyrotron and launcher. All components are required to be 2-MW compatible, and their layout and organization have been optimized for simplifying the maintenance accessibility and monitoring the primary tritium barrier integrity. Two different TL layouts are at the moment under study, to accommodate the two alternative options for the European sources: four 2-MW units or eight 1-MW units. In this paper the actual design is presented and the technical requirements are discussed.