ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V. Vdovin
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 690-708
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11735
Articles are hosted by Taylor and Francis Online.
We present modeling results of basic electron cyclotron heating (ECH) scenarios in several tokamaks and ITER performed with the most recent version of the three-dimensional (3-D) full-wave STELEC code (stellarator ECH, including tokamaks as a special case). This code includes all basic wave physics such as interference, diffraction, wave tunneling, mode conversion to electron Bernstein waves at the upper hybrid resonance (UHR), and appropriate boundary conditions. The code solves the wave equations in real 3-D magnetic geometry and thanks to the use of massive parallel teraflop computers, it is the first to provide full-wave solutions of the problem in toroidal plasmas. Several important new results are thus obtained that cannot be predicted with codes based on ray-tracing techniques, such as the influence of diffraction effects and the importance of the UHR for both X- and O-mode antenna excitation at fundamental harmonic. This last result also shows that the so-called "O and X" modes are coupled solutions. The coupling of these modes, partly supported by experiments in the DIII-D tokamak showing similar heating efficiencies for both radiated modes, leads to different power deposition profiles and spatial distribution, compared to results from ray-tracing codes. Coupling between the O-mode and the X-mode (launched at the low-field side) reveals the importance of electron Bernstein waves in ECH calculations for high-density ITER plasmas. These results not only could influence the predictions for neoclassical tearing mode suppression for ITER using electron cyclotron current drive but could also lead to important simplifications in ECH hardware (converters, polarization, etc.) and to a reduced cost of the ECH system on ITER. The code also allowed investigation of the urgent issue of the O-X-B ECH scenario for overdense tokamak/stellarator plasmas.