ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
V. Vdovin
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 690-708
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11735
Articles are hosted by Taylor and Francis Online.
We present modeling results of basic electron cyclotron heating (ECH) scenarios in several tokamaks and ITER performed with the most recent version of the three-dimensional (3-D) full-wave STELEC code (stellarator ECH, including tokamaks as a special case). This code includes all basic wave physics such as interference, diffraction, wave tunneling, mode conversion to electron Bernstein waves at the upper hybrid resonance (UHR), and appropriate boundary conditions. The code solves the wave equations in real 3-D magnetic geometry and thanks to the use of massive parallel teraflop computers, it is the first to provide full-wave solutions of the problem in toroidal plasmas. Several important new results are thus obtained that cannot be predicted with codes based on ray-tracing techniques, such as the influence of diffraction effects and the importance of the UHR for both X- and O-mode antenna excitation at fundamental harmonic. This last result also shows that the so-called "O and X" modes are coupled solutions. The coupling of these modes, partly supported by experiments in the DIII-D tokamak showing similar heating efficiencies for both radiated modes, leads to different power deposition profiles and spatial distribution, compared to results from ray-tracing codes. Coupling between the O-mode and the X-mode (launched at the low-field side) reveals the importance of electron Bernstein waves in ECH calculations for high-density ITER plasmas. These results not only could influence the predictions for neoclassical tearing mode suppression for ITER using electron cyclotron current drive but could also lead to important simplifications in ECH hardware (converters, polarization, etc.) and to a reduced cost of the ECH system on ITER. The code also allowed investigation of the urgent issue of the O-X-B ECH scenario for overdense tokamak/stellarator plasmas.