ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
V. Vdovin
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 690-708
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11735
Articles are hosted by Taylor and Francis Online.
We present modeling results of basic electron cyclotron heating (ECH) scenarios in several tokamaks and ITER performed with the most recent version of the three-dimensional (3-D) full-wave STELEC code (stellarator ECH, including tokamaks as a special case). This code includes all basic wave physics such as interference, diffraction, wave tunneling, mode conversion to electron Bernstein waves at the upper hybrid resonance (UHR), and appropriate boundary conditions. The code solves the wave equations in real 3-D magnetic geometry and thanks to the use of massive parallel teraflop computers, it is the first to provide full-wave solutions of the problem in toroidal plasmas. Several important new results are thus obtained that cannot be predicted with codes based on ray-tracing techniques, such as the influence of diffraction effects and the importance of the UHR for both X- and O-mode antenna excitation at fundamental harmonic. This last result also shows that the so-called "O and X" modes are coupled solutions. The coupling of these modes, partly supported by experiments in the DIII-D tokamak showing similar heating efficiencies for both radiated modes, leads to different power deposition profiles and spatial distribution, compared to results from ray-tracing codes. Coupling between the O-mode and the X-mode (launched at the low-field side) reveals the importance of electron Bernstein waves in ECH calculations for high-density ITER plasmas. These results not only could influence the predictions for neoclassical tearing mode suppression for ITER using electron cyclotron current drive but could also lead to important simplifications in ECH hardware (converters, polarization, etc.) and to a reduced cost of the ECH system on ITER. The code also allowed investigation of the urgent issue of the O-X-B ECH scenario for overdense tokamak/stellarator plasmas.