ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Warren H. Giedt, Jorge J. Sanchez, Thomas P. Bernat
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 588-599
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1172
Articles are hosted by Taylor and Francis Online.
The influence of capsule wall material and the transfer gas surrounding the capsule on the time required for beta-heating-induced redistribution of a 50-50 mole percent mixture of deuterium and tritium (DT) in a spherical capsule are investigated analytically and numerically. The derivation of an analytical solution for the redistribution time in a one-dimensional binary diffusion model, which includes the thermal resistance of the capsule, is first described. This result shows that the redistribution time for a high conductivity capsule wall is approximately doubled after 8 days of 3He formation. In contrast, with a low thermal conductivity capsule wall (e.g., polyimide), the redistribution time would increase by less than 10%The substantial effect of the capsule wall resistance suggested that the resistance to heat transfer from the capsule through the surrounding transfer gas to the hohlraum wall would also influence the redistribution process. This was investigated with a spherical model, which was based on accounting for energy transfer by diffusion with a conduction heat transfer approximation. This made it possible to solve for the continuous temperature distribution throughout the capsule and surrounding gas. As with the capsule the redistribution times depended on the relative values of the thermal resistances of the vapor in the capsule and the transfer gas. With increasing vapor thermal resistance (increased concentration of 3He) redistributions times for hydrocarbon capsules were less than the minimum one-dimensional value of 27 minutes. Further analytical and experimental investigation of the thermal interaction between the capsule and hohlraum is recommended.