ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Warren H. Giedt, Jorge J. Sanchez, Thomas P. Bernat
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 588-599
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1172
Articles are hosted by Taylor and Francis Online.
The influence of capsule wall material and the transfer gas surrounding the capsule on the time required for beta-heating-induced redistribution of a 50-50 mole percent mixture of deuterium and tritium (DT) in a spherical capsule are investigated analytically and numerically. The derivation of an analytical solution for the redistribution time in a one-dimensional binary diffusion model, which includes the thermal resistance of the capsule, is first described. This result shows that the redistribution time for a high conductivity capsule wall is approximately doubled after 8 days of 3He formation. In contrast, with a low thermal conductivity capsule wall (e.g., polyimide), the redistribution time would increase by less than 10%The substantial effect of the capsule wall resistance suggested that the resistance to heat transfer from the capsule through the surrounding transfer gas to the hohlraum wall would also influence the redistribution process. This was investigated with a spherical model, which was based on accounting for energy transfer by diffusion with a conduction heat transfer approximation. This made it possible to solve for the continuous temperature distribution throughout the capsule and surrounding gas. As with the capsule the redistribution times depended on the relative values of the thermal resistances of the vapor in the capsule and the transfer gas. With increasing vapor thermal resistance (increased concentration of 3He) redistributions times for hydrocarbon capsules were less than the minimum one-dimensional value of 27 minutes. Further analytical and experimental investigation of the thermal interaction between the capsule and hohlraum is recommended.