ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Warren H. Giedt, Jorge J. Sanchez, Thomas P. Bernat
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 588-599
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1172
Articles are hosted by Taylor and Francis Online.
The influence of capsule wall material and the transfer gas surrounding the capsule on the time required for beta-heating-induced redistribution of a 50-50 mole percent mixture of deuterium and tritium (DT) in a spherical capsule are investigated analytically and numerically. The derivation of an analytical solution for the redistribution time in a one-dimensional binary diffusion model, which includes the thermal resistance of the capsule, is first described. This result shows that the redistribution time for a high conductivity capsule wall is approximately doubled after 8 days of 3He formation. In contrast, with a low thermal conductivity capsule wall (e.g., polyimide), the redistribution time would increase by less than 10%The substantial effect of the capsule wall resistance suggested that the resistance to heat transfer from the capsule through the surrounding transfer gas to the hohlraum wall would also influence the redistribution process. This was investigated with a spherical model, which was based on accounting for energy transfer by diffusion with a conduction heat transfer approximation. This made it possible to solve for the continuous temperature distribution throughout the capsule and surrounding gas. As with the capsule the redistribution times depended on the relative values of the thermal resistances of the vapor in the capsule and the transfer gas. With increasing vapor thermal resistance (increased concentration of 3He) redistributions times for hydrocarbon capsules were less than the minimum one-dimensional value of 27 minutes. Further analytical and experimental investigation of the thermal interaction between the capsule and hohlraum is recommended.