ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Yasuhiro Suzuki
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Page 626
Appendix A | Fourth ITER International Summer School (IISS2010) / Extended Abstracts | doi.org/10.13182/FST11-A11707
Articles are hosted by Taylor and Francis Online.
The stellarator and heliotron are alternate candidates for magnetically confined fusion devices. A major difference is the source of the rotational transform [iota] = 1/q. In tokamaks, the rotational transform [iota] is produced by coupling the symmetric toroidal field and the poloidal field produced by the plasma current along the toroidal direction. Strictly speaking, the tokamak configuration can be assumed to be a two-dimensional (2-D) system. Note that the rotational transform does not exist for the vacuum. For stellarator and heliotron configurations, the rotational transform is produced by the shaping of flux surfaces. To shape flux surfaces, the vacuum magnetic field is produced by external coils with helical-winding laws. This means the vacuum magnetic field produced for the vacuum is intrinsically three dimensional (3-D). Thus, the plasma current is not required to make flux surfaces. This characteristic is an advantage. Since the plasma current is not necessary, disruptions do not appear and steady-state operation is possible. However, because of the 3-D plasma responses, experimental and theoretical studies become more complex.