ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
Y. Liang
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 586-601
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11699
Articles are hosted by Taylor and Francis Online.
The next generation of fusion machines like ITER and DEMO will need a reliable method for controlling the periodic transient expulsion of a considerable amount of energy onto the plasma-facing components caused by instabilities at the plasma edge. The good plasma confinement in these tokamak devices will result in a steepened pressure profile at the plasma edge. When the pressure gradient exceeds a critical value, so-called edge-localized modes (ELMs) are destabilized. These modes feature a periodic fast collapse of the edge pressure, a sudden loss of the confinement, and a subsequent release of heat and particles onto plasma-facing components. The associated transient heat loads might cause excess erosion and lead to a strong reduction of the plasma-facing component lifetime. In this lecture, an overview of recent development of several ELM control methods for next-generation tokamaks, e.g., ITER is given. Some key physics issues related to the mechanism of ELM control are discussed.