ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Allen H. Boozer
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 561-571
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11697
Articles are hosted by Taylor and Francis Online.
The theory of control of nonaxisymmetric perturbations is dominated by the wide sensitivity range of a tokamak plasma to externally produced magnetic perturbations. External perturbations are characterized by their normal magnetic field [italic B with right arrow above]x[italic n with circumflex accent] on the unperturbed plasma surface. The first spatial distribution of [italic B with right arrow above]x[italic n with circumflex accent] on the unperturbed plasma surface in a sensitivity series is that distribution that at the smallest amplitude has a significant effect on plasma properties. The second distribution of [italic B with right arrow above]x[italic n with circumflex accent] in that series is the distribution to which the plasma has greatest sensitivity while being orthogonal to the first. Two distributions are orthogonal if the integral of their product over the unperturbed plasma surface is zero. Only a limited number of distributions in the sensitivity series can be driven to an unacceptable amplitude by credible construction errors in ITER. Essentially any external coil set that produces a nonaxisymmetric magnetic field of adequate strength with a controllable toroidal phase can null the drive for the distribution of highest plasma sensitivity. However, the simultaneous nulling of not only the first but also of a number of other distributions in the sensitivity series is far more difficult. It is the properties of these distributions of secondary importance that determine both the machine tolerances that are required for successful control and the adequacy of a given set of error field control coils. Nonaxisymmetric fields can also have beneficial effects such as the control of edge-localized modes. Implementation requires driving a normal field distribution to which the beneficial effect is sensitive while not driving detrimental distributions of high plasma sensitivity.