ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Browns Ferry’s reactors receive subsequent license renewals
The operating licenses for the three boiling water reactors at Browns Ferry nuclear power plant, in Athens, Ala., have each been renewed by the Nuclear Regulatory Commission for an additional 20 years. The reactors, operated by the Tennessee Valley Authority, are now licensed to operate until December 2053 for Unit 1, June 2054 for Unit 2, and July 2056 for Unit 3.
Allen H. Boozer
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 561-571
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11697
Articles are hosted by Taylor and Francis Online.
The theory of control of nonaxisymmetric perturbations is dominated by the wide sensitivity range of a tokamak plasma to externally produced magnetic perturbations. External perturbations are characterized by their normal magnetic field [italic B with right arrow above]x[italic n with circumflex accent] on the unperturbed plasma surface. The first spatial distribution of [italic B with right arrow above]x[italic n with circumflex accent] on the unperturbed plasma surface in a sensitivity series is that distribution that at the smallest amplitude has a significant effect on plasma properties. The second distribution of [italic B with right arrow above]x[italic n with circumflex accent] in that series is the distribution to which the plasma has greatest sensitivity while being orthogonal to the first. Two distributions are orthogonal if the integral of their product over the unperturbed plasma surface is zero. Only a limited number of distributions in the sensitivity series can be driven to an unacceptable amplitude by credible construction errors in ITER. Essentially any external coil set that produces a nonaxisymmetric magnetic field of adequate strength with a controllable toroidal phase can null the drive for the distribution of highest plasma sensitivity. However, the simultaneous nulling of not only the first but also of a number of other distributions in the sensitivity series is far more difficult. It is the properties of these distributions of secondary importance that determine both the machine tolerances that are required for successful control and the adequacy of a given set of error field control coils. Nonaxisymmetric fields can also have beneficial effects such as the control of edge-localized modes. Implementation requires driving a normal field distribution to which the beneficial effect is sensitive while not driving detrimental distributions of high plasma sensitivity.