ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. A. Snipes, D. J. Campbell, T. Casper, Y. Gribov, A. Loarte, M. Sugihara, A. Winter, L. Zabeo
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 427-439
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11688
Articles are hosted by Taylor and Francis Online.
Controlling the plasma in ITER to achieve its primary mission goals requires a complex and sophisticated plasma control system (PCS) that will be based initially on those of existing tokamaks, with some significant differences. An overview of the physical phenomena on which the ITER PCS will be based is presented with particular emphasis on magnetohydrodynamic (MHD) instabilities. The ITER PCS is logically structured into five parts that work closely together: (a) wall conditioning and tritium removal; (b) plasma axisymmetric magnetic control, including plasma initiation, inductive plasma current, position, and shape control; (c) plasma kinetic control, including fueling, power and particle flux to the first wall and divertor, noninductive plasma current, plasma pressure, and fusion burn control; (d) nonaxisymmetric control, which includes sawteeth, neoclassical tearing modes, edge localized modes, error fields and resistive wall modes, and Alfven eigenmodes; and (e) event handling, including changing the control algorithm or scenario when a plant system fault or a plasma-related event occurs that could affect plasma operation, which includes disruption mitigation. At high plasma performance, the control of MHD instabilities will become particularly important in ITER to maintain the fusion burn and to avoid potential damage to the first wall.