ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
J. A. Snipes, D. J. Campbell, T. Casper, Y. Gribov, A. Loarte, M. Sugihara, A. Winter, L. Zabeo
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 427-439
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11688
Articles are hosted by Taylor and Francis Online.
Controlling the plasma in ITER to achieve its primary mission goals requires a complex and sophisticated plasma control system (PCS) that will be based initially on those of existing tokamaks, with some significant differences. An overview of the physical phenomena on which the ITER PCS will be based is presented with particular emphasis on magnetohydrodynamic (MHD) instabilities. The ITER PCS is logically structured into five parts that work closely together: (a) wall conditioning and tritium removal; (b) plasma axisymmetric magnetic control, including plasma initiation, inductive plasma current, position, and shape control; (c) plasma kinetic control, including fueling, power and particle flux to the first wall and divertor, noninductive plasma current, plasma pressure, and fusion burn control; (d) nonaxisymmetric control, which includes sawteeth, neoclassical tearing modes, edge localized modes, error fields and resistive wall modes, and Alfven eigenmodes; and (e) event handling, including changing the control algorithm or scenario when a plant system fault or a plasma-related event occurs that could affect plasma operation, which includes disruption mitigation. At high plasma performance, the control of MHD instabilities will become particularly important in ITER to maintain the fusion burn and to avoid potential damage to the first wall.