ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. A. Snipes, D. J. Campbell, T. Casper, Y. Gribov, A. Loarte, M. Sugihara, A. Winter, L. Zabeo
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 427-439
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11688
Articles are hosted by Taylor and Francis Online.
Controlling the plasma in ITER to achieve its primary mission goals requires a complex and sophisticated plasma control system (PCS) that will be based initially on those of existing tokamaks, with some significant differences. An overview of the physical phenomena on which the ITER PCS will be based is presented with particular emphasis on magnetohydrodynamic (MHD) instabilities. The ITER PCS is logically structured into five parts that work closely together: (a) wall conditioning and tritium removal; (b) plasma axisymmetric magnetic control, including plasma initiation, inductive plasma current, position, and shape control; (c) plasma kinetic control, including fueling, power and particle flux to the first wall and divertor, noninductive plasma current, plasma pressure, and fusion burn control; (d) nonaxisymmetric control, which includes sawteeth, neoclassical tearing modes, edge localized modes, error fields and resistive wall modes, and Alfven eigenmodes; and (e) event handling, including changing the control algorithm or scenario when a plant system fault or a plasma-related event occurs that could affect plasma operation, which includes disruption mitigation. At high plasma performance, the control of MHD instabilities will become particularly important in ITER to maintain the fusion burn and to avoid potential damage to the first wall.