ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
S. C. Laffite, D. C. Wilson
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 558-564
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1168
Articles are hosted by Taylor and Francis Online.
Filling an ignition capsule through a drilled hole in the ablator is the current approach to fielding an ignition capsule. But it adds an initial defect to the capsule which might grow large enough to affect or even prevent ignition. We present here calculations of the effects of fill tubes and holes for the 1.4 MJ 300 eV BeCu NIF capsule. The code used is the 3D AMR code written by Los Alamos and SAIC, "RAGE". Several fill tube/hole sizes were tried. Most calculations were made in a planar 2D geometry, providing reliable information on the first part of the implosion before convergence effects become important. A 5 m diameter hole generates a 25 by 30 m jet when the main shock breaks out into the DT gas. The mass involved in the jet is insignificant, less than 1/1000 of the hot spot mass. There is no large difference between the jets formed by a plug and a fill tube, before they break out into DT gas. High resolution spherical calculations are still in progress to understand the end of the implosion. Experiments are planned as a support to this study.